临床微生物学档案

  • 国际标准期刊号: 1989-8436
  • 期刊 h 指数: 22
  • 期刊引用分数: 7.55
  • 期刊影响因子: 6.38
索引于
  • 打开 J 门
  • Genamics 期刊搜索
  • 全球影响因子 (GIF)
  • 开放档案倡议
  • 中国知网(CNKI)
  • 研究期刊索引目录 (DRJI)
  • OCLC-WorldCat
  • 普罗奎斯特传票
  • 普布隆斯
  • 米亚尔
  • 大学教育资助委员会
  • 日内瓦医学教育与研究基金会
  • 谷歌学术
  • Scimago期刊排名
  • 秘密搜索引擎实验室
  • 研究之门
分享此页面

抽象的

Scoring Model to Predict Dengue Infection in the Early Phase of Illness in Primary Health Care Centre

Cucunawangsih, Beti Ernawati Dewi,Veli Sungono, Nata Pratama Hardjo Lugito, Bambang Sutrisna, Herdiman T. Pohan,Agus Syahrurachman,Djoko Widodo,Sudarto Ronoatmodjo, Modastri K. Sudaryo, Cicilia Windiyaningsih, T. Mirawati Sudiro

Background: To design a new scoring model to diagnose dengue in the early phase of illness that could be used in primary health care facilities.
Methods and Findings: Cohort design with consecutive sampling of eighty four participants with one/more clinical features similar to dengue illness within 72 hours after onset of fever. Rapid tests of IgM and NS-1 antigen, and RT-PCR were used to confirm dengue infection. Dengue scoring model with sensitivity and specificity for each value was developed using multivariate logistic regression analysis. Performance of the model was assessed using the ROC curve, and the validity was compared to 1997, 2009 and 2011 WHO dengue classification. Presumptive scoring model used days of fever, presence of myalgia, tourniquet test, total WBC count, monocyte count, and platelet count variables, while probable scoring model used monocytes count and NS-1 antigen for laboratory variables. Patients were most likely to have presumptive dengue illness if they had a total score of ≥ 14 with sensitivity, specificity and likelihood ratio positive of 79.7%, 60.0%, and 1.99 respectively. Patients with a total score of ≥ 7 diagnosed as probable dengue with sensitivity, specificity and likelihood ratio positive of 79.7%, 68.0% and 2.48 respectively.
Conclusion: The scoring models could predict dengue illness better than 1997 and 2011 WHO classification. It was easy to implement so that it could help clinicians determine the diagnosis of patients with acute febrile illness.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证