国际药物开发与研究杂志

  • 国际标准期刊号: 0975-9344
  • 期刊 h 指数: 44
  • 期刊引用分数: 59.93
  • 期刊影响因子: 48.80
索引于
  • Genamics 期刊搜索
  • 中国知网(CNKI)
  • 引用因子
  • 西马戈
  • 研究期刊索引目录 (DRJI)
  • OCLC-WorldCat
  • 普布隆斯
  • 米亚尔
  • 大学教育资助委员会
  • 欧洲酒吧
  • 谷歌学术
  • 夏尔巴罗密欧
  • 秘密搜索引擎实验室
  • 研究之门
分享此页面

抽象的

QSAR Modelling of PDE5 Inhibitory Activity of Tetracyclic Guanine Derivatives as Antihypertensive Agents

Anupama Mittal, Mukta Sharma and Aarti Singh

A linear and non-linear quantitative structure-activity relationship (QSAR) study is presented for modelling and predicting PDE5 inhibitory activity. A data set consisted of 32 derivatives of tetracyclic guanine was used in this study. Statistical analysis techniques, such as Multiple Linear Regression (MLR), Partial Least-Squares (PLS) Regression and Neural Network (NN) were carried out to calibrate and validate QSAR model. Leave one out method was used to get stable MLR-QSAR with high predictivity: r=0.92, r2=0.85, r2 cv=0.75 and comparable value of cross validated correlation coefficient r2cv=0.78 of PLS in order to predict the robustness of the model. The results obtained by forward feed neural network explained the effect of electronic, hydrophobic and topological descriptors on the biological activity.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证