国际药物开发与研究杂志

  • 国际标准期刊号: 0975-9344
  • 期刊 h 指数: 44
  • 期刊引用分数: 59.93
  • 期刊影响因子: 48.80
索引于
  • Genamics 期刊搜索
  • 中国知网(CNKI)
  • 引用因子
  • 西马戈
  • 研究期刊索引目录 (DRJI)
  • OCLC-WorldCat
  • 普布隆斯
  • 米亚尔
  • 大学教育资助委员会
  • 欧洲酒吧
  • 谷歌学术
  • 夏尔巴罗密欧
  • 秘密搜索引擎实验室
  • 研究之门
分享此页面

抽象的

Pharmaceutical formulations with Spectrophotometric Determination of Bromhexine HCl

Jim Chuan

Theophylline has been used as an internal standard in the development of a quick, easy, cheap, and sensitive liquid chromatographic method for the measurement of gemcitabine in injectable dose forms. With a mobile phase made up of 90% water and 10% acetonitrile, chromatographic separation was accomplished on a Phenomenex Luna C-18 column (250 mm 4.6 mm; 5). ( pH ). Gemcitabine and theophylline signals were captured at 275 nm. The 0.5 to 50 g/mL concentration range was covered by linear calibration curves. As high as 0.999 was the correlation coefficient. 0.1498 and 0.4541 g/mL, respectively, were the limits of detection and quantitation. Less than 2% were within- and between-day precision. From 100.2% to 100.4% of the method's measurements were accurate. The medication was stable to sunshine and UV light, according to stability experiments. Under alkaline stress, the medication yields six distinct hydrolytic compounds, while under acidic stress, it yields three. The medicine is also degraded by oxidative and aqueous stresses. Comparing the alkaline condition to other stress settings, degradation was greater in this one. Using experimental design, the robustness of the approaches was assessed. According to validation, the suggested approach is suitable for the quantitative analysis and is specific, accurate, precise, reliable, robust, and reproducible.

For the analysis of the medication in pharmaceuticals, five spectrophotometric techniques for bromhexine HCl determination have been devised, verified, and put to use. The three triphenylmethane dyes—bromothymol blue (BTB), bromophenol blue (BPB), and bromocresol green—are used to ion-pair complex the medication in the methods A, B, and C. (BCG). The complexes are extracted into chloroform, and as a function of drug concentration, absorbance is measured at about 415 nm. In each instance, it is discovered that the complex's stoichiometry is 1 : 1. The charge-transfer complexation of the neutralised drug with the iodine in Method D outcome in the production of the iodide ion, whose absorbance at 366 nm is determined as a function of the drug concentration.  this complex's composition is also 1: 1. The concept behind Method E is the oxidation of the medication with alkaline KMnO4, which produces a green manganate ion with a maximum wavelength of 610 nm. The reaction's kinetics is observed as the intensity of the green hue grew with time, and calibration curves are built using the initial rate and fixed time approaches. The methods can be utilised successfully in industries for the assay of drugs in pure form and pharmaceuticals, according to excellent recovery studies with high accuracy and precision.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证