健康科学杂志

  • 国际标准期刊号: 1108-7366
  • 期刊 h 指数: 51
  • 期刊引用分数: 10.69
  • 期刊影响因子: 9.13
索引于
  • Genamics 期刊搜索
  • 中国知网(CNKI)
  • 引用因子
  • CINAHL 完整
  • 西马戈
  • 电子期刊图书馆
  • 研究期刊索引目录 (DRJI)
  • EMCare
  • OCLC-WorldCat
  • 大学教育资助委员会
  • 日内瓦医学教育与研究基金会
  • 欧洲酒吧
  • 谷歌学术
  • 夏尔巴罗密欧
  • 秘密搜索引擎实验室
分享此页面

抽象的

Improving linearity in health science Investigations

Satyendra Nath Chakrabartty*

Correlation and linear regression are frequently used to evaluate the degree of linear association between two variables and also to find the empirical relationship. However, violations of assumptions often give results which are not valid. High value of correlation coefficient is taken as degree of linearity between two variables and attempt is made to fit linear regression equation. However, linearity implies high correlation but the converse is not true. The paper describes with examples that concept of linearity is different from correlations, effect of violation of assumptions of correlations and linear regressions and suggests procedures to improve correlation between two variables which can be extended to multi variables.

Keywords

Linearity; Correlation coefficient; Standard error; Normal distribution; Generalized inverse

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证