神经病学和神经科学杂志

  • 国际标准期刊号: 2171-6625
  • 期刊 h 指数: 17
  • 期刊引用分数: 4.43
  • 期刊影响因子: 3.38
索引于
  • 打开 J 门
  • Genamics 期刊搜索
  • 全球影响因子 (GIF)
  • 中国知网(CNKI)
  • 研究期刊索引目录 (DRJI)
  • OCLC-WorldCat
  • 普罗奎斯特传票
  • 科学期刊影响因子 (SJIF)
  • 欧洲酒吧
  • 谷歌学术
  • 秘密搜索引擎实验室
分享此页面

抽象的

Dorsal Root Ganglia Mitochondrial Biochemical Changes in Non-diabetic and Streptozotocin-Induced Diabetic Mice Fed with a Standard or High-Fat Diet

Guilford BL, Ryals JM, E Lezi, Swerdlow RH and Wright DE

Background: Mitochondrial dysfunction is purported as a contributory mechanism underlying diabetic neuropathy, but a defined role for damaged mitochondria in diabetic nerves remains unclear, particularly in standard diabetes models. Experiments here used a high-fat diet in attempt to exacerbate the severity of diabetes and expedite the time-course in which mitochondrial dysfunction may occur. We hypothesized a high-fat diet in addition to diabetes would increase stress on sensory neurons and worsen mitochondrial dysfunction.

Methods: Oxidative phosphorylation proteins and proteins associated with mitochondrial function were quantified in lumbar dorsal root ganglia. Comparisons were made between non-diabetic and streptozotocininduced (STZ) C57Bl/6 mice fed a standard or high-fat diet for 8 weeks.

Results: Complex III subunit Core-2 and voltage dependent anion channel were increased (by 36% and 28% respectively, p<0.05) in diabetic mice compared to nondiabetic mice fed the standard diet. There were no differences among groups in UCP2, PGC-1α, PGC-1β levels or Akt, mTor, or AMPK activation. These data suggest compensatory mitochondrial biogenesis occurs to offset potential mitochondrial dysfunction after 8 weeks of STZinduced diabetes, but a high-fat diet does not alter these parameters.

Conclusion: Our results indicate mitochondrial protein changes early in STZ-induced diabetes. Interestingly, a high-fat diet does not appear to affect mitochondrial proteins in either nondiabetic or STZ- diabetic mice.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证