转化生物医学

  • 国际标准期刊号: 2172-0479
  • 期刊 h 指数: 16
  • 期刊引用分数: 5.91
  • 期刊影响因子: 3.66
索引于
  • 打开 J 门
  • Genamics 期刊搜索
  • 期刊目录
  • 研究圣经
  • 全球影响因子 (GIF)
  • 中国知网(CNKI)
  • 引用因子
  • 西马戈
  • 电子期刊图书馆
  • 研究期刊索引目录 (DRJI)
  • OCLC-WorldCat
  • 普罗奎斯特传票
  • 普布隆斯
  • 米亚尔
  • 大学教育资助委员会
  • 日内瓦医学教育与研究基金会
  • 谷歌学术
  • 夏尔巴罗密欧
  • 秘密搜索引擎实验室
  • 研究之门
分享此页面

抽象的

Decision Networks Cannot Achieve Optimal Performance due to Biological Constraints

Robert Skopec

Decision making is important basic mechanism of intelligent behavior. It is valid especially for studying higher brain functions as a tool to achieve an asymptotically optimal performance. Level of decision networks performance could determine the efficiency in most categories of human choice processes. We argue that during adaptation there are serious biological constraints in neural networks limiting mediation of the choice processes parameters. Evidence is corrupted by noise and reward during trade-off in units of log (P) probabilities. As result, randomness and informational entropy is part of the decision process itself. We analyze the mechanisms involved in neural computations with a view toward development of novel computational paradigms based on how the brain works.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证