国际药物开发与研究杂志

  • 国际标准期刊号: 0975-9344
  • 期刊 h 指数: 44
  • 期刊引用分数: 59.93
  • 期刊影响因子: 48.80
索引于
  • Genamics 期刊搜索
  • 中国知网(CNKI)
  • 引用因子
  • 西马戈
  • 研究期刊索引目录 (DRJI)
  • OCLC-WorldCat
  • 普布隆斯
  • 米亚尔
  • 大学教育资助委员会
  • 欧洲酒吧
  • 谷歌学术
  • 夏尔巴罗密欧
  • 秘密搜索引擎实验室
  • 研究之门
分享此页面

抽象的

Biphase Drug Delivery Systems Carrying Nanocomposite Particles

Thomas Ende

Magnetite nanoparticles and poly (D,L-lactide-co-glycolide) (PLGA) were combined to create drug-carrying magnetic nanocomposite spheres for magnetic targeted drug delivery. Through the chemical coprecipitation of ferric and ferrous chloride salts in the presence of a potent basic solution, magnetic nanoparticles of magnetite (average size: 13 nm) were created (ammonium hydroxide). For the synthesis of nanocomposite spheres, an oil-in-oil emulsion/solvent evaporation process was used, with agitation lasting 1.5 to 2 hours at 7000 rpm. Specifically, acetonitrile (oily phase I) was used to dissolve the PLGA and drug, which was subsequently mixed with magnetic nanoparticles. Next, Span 80- and viscous paraffin oil-containing droplets were added in a dropwise fashion (oily phase II). Using dynamic laser light scattering (DLLS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and a superconducting quantum interference device, the nanocomposite spheres with various amounts (0%, 10%, 20%, and 25%) of magnetite were assessed in terms of particle size, morphology, and magnetic properties (SQUID). According to the findings, nanocomposite spheres with diameters ranging from 200 nm to 1.1 m are superparamagnetic over blocking temperatures close to 40 K and reach magnetization saturation beyond 5,000 Oe at ambient temperature.

Successful attempts have been made to synthesise and analyse pseudopolyrotaxanes made composed of polyethylene glycol axes with end thymine groups and -cyclodextrin rings. The principal drug delivery system, PPR-Fl, was created by conjugating fluorescein, a model drug, to the hydroxyl functional groups of the cyclodextrin rings of PPR via ester bonds. By forming hydrogen bonds with a complementary molecule like polycitric acid, citric acid, or adenine, the PPR-Fl was finally sealed off. This research sought to modulate the noncovalent interactions between stoppers and thymine end groups in order to regulate the release of fluorescein-cyclodextrin conjugates from PPR-Fl, which served as secondary drug delivery systems. It was discovered that pH had the ability to regulate the rate of Fl-CD release from PPR-Fl.
 

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证