转化生物医学

  • 国际标准期刊号: 2172-0479
  • 期刊 h 指数: 16
  • 期刊引用分数: 5.91
  • 期刊影响因子: 3.66
索引于
  • 打开 J 门
  • Genamics 期刊搜索
  • 期刊目录
  • 研究圣经
  • 全球影响因子 (GIF)
  • 中国知网(CNKI)
  • 引用因子
  • 西马戈
  • 电子期刊图书馆
  • 研究期刊索引目录 (DRJI)
  • OCLC-WorldCat
  • 普罗奎斯特传票
  • 普布隆斯
  • 米亚尔
  • 大学教育资助委员会
  • 日内瓦医学教育与研究基金会
  • 谷歌学术
  • 夏尔巴罗密欧
  • 秘密搜索引擎实验室
  • 研究之门
分享此页面

抽象的

Belongingness Clustering and Region Labeling Based Pixel Classification for Automatic Left Ventricle Segmentation in Cardiac MRI Images

Ayush Goyal, Vinayak Ray

This paper presents a fully automatic rapid method for delineation of the left ventricle (LV) from MRI images of heart patients for the critical diagnosis of myocardial function as an evaluation of heart disease. In this research, completely automated image segmentation is performed using a belongingness clustering and region labeling based pixel classification approach. This new combined region labeling and belongingness clustering technique removes the need for manual initialization, which is required in deformable methods. The left ventricle is segmented automatically in all slices in the multi-frame MRI data of the whole cardiac cycle rapidly in 0.67 seconds for a single frame on average. Manual segmentation of the left ventricle in the multi-frame cardiac MRI image data by experts was used as a standard to test the accuracy of the automated left ventricle segmentation method. Medical parameters like End Systolic Volume (ESV), End Diastolic Volume (EDV) and Ejection Fraction (EF) were calculated both automatically and manually and compared for accuracy.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证