转化生物医学

  • 国际标准期刊号: 2172-0479
  • 期刊 h 指数: 16
  • 期刊引用分数: 5.91
  • 期刊影响因子: 3.66
索引于
  • 打开 J 门
  • Genamics 期刊搜索
  • 期刊目录
  • 研究圣经
  • 全球影响因子 (GIF)
  • 中国知网(CNKI)
  • 引用因子
  • 西马戈
  • 电子期刊图书馆
  • 研究期刊索引目录 (DRJI)
  • OCLC-WorldCat
  • 普罗奎斯特传票
  • 普布隆斯
  • 米亚尔
  • 大学教育资助委员会
  • 日内瓦医学教育与研究基金会
  • 谷歌学术
  • 夏尔巴罗密欧
  • 秘密搜索引擎实验室
  • 研究之门
分享此页面

抽象的

Anti-Inflammatory Effects of The Chloroform Extract of Annona muricata Leaves on Phospholipase A2 and Prostaglandin Synthase Activities

Oyekachukwu AR, Elijah JP, Eshu OV* and Nwodo OFC

This study ascertained the mechanisms of the anti-inflammatory activity of the total lipid (chloroform) extract of Annona muricata leaves. The plant material was extracted with a mixture of chloroform and methanol (2:1) and partitioned with 0.2 volume water. The chloroform extract was investigated for its effect on the in vitro activities of phospholipase A2, prostaglandin synthase and membrane stabilization. The extract significantly (p < 0.05) inhibited phospholipase A2 activity in a concentration-related manner compared to the control, with a range of 0.2 - 0.6 mg/ml inhibiting the enzyme activity by 23.91 - 43.48%. Effect of the extract on prostaglandin synthase activity showed a significant (p < 0.05) inhibition of enzyme activity at the doses 0.1, 0.5 and 1.0 mg/ml compared to the control. The highest percentage inhibition (87.46%) attained at 0.5 mg/ml was comparable to that of 1.0 mg/ml indomethacin. At various concentrations (0.1-0.8 mg/ml), the chloroform extract also significantly (p < 0.05) inhibited heat and hypotonicityinduced haemolysis of human red blood cells (HRBCs) compared to the control. The highest percentage inhibition of heat-induced haemolysis (53.03%) was obtained at 0.4 mg/ml of the extract while the highest percentage inhibition of hypotonicity-induced haemolysis (77.91%) was obtained at 0.8 mg/ml. This study thus confirmed that the mode of action of this extract of Annona muricata leaves on inflammation could be through the inhibition of phospholipase A2 and prostaglandin synthase activities and by membrane stabilization.