生物医学科学杂志

  • 国际标准期刊号: 2254-609X
  • 期刊 h 指数: 15
  • 期刊引用分数: 5.60
  • 期刊影响因子: 4.85
索引于
  • Genamics 期刊搜索
  • 中国知网(CNKI)
  • 研究期刊索引目录 (DRJI)
  • OCLC-WorldCat
  • 谷歌学术
  • 夏尔巴罗密欧
  • 秘密搜索引擎实验室
分享此页面

抽象的

3D Modeling Using the Finite Element Method for Directional Removal of a Cancerous Tumor

Idir Mellal, Emmanuel Kengne, Karim El Guemhioui and Ahmed Lakhssassi

A 3D Finite Element Method (FEM) model for directional removing of a tumor is presented in this paper. The proposed model shows a new method to control the direction of the temperature diffusion during the thermal ablation. We developed a directional probe with a curved cathode as heating source to remove the malignant cells and protect the surrounding healthy cells. With the use of the COMSOL Multiphysics software, we have simulated numerically the ablation process. We have succeeded in achieving a directional ablation using a curved cathode. The targeted cells overheated were supposed to be killed and the healthy surrounding tissue was supposed to be saved. We have evaluated the necrotic tissue fraction in several points, and we have found that the cells are killed in the cathode direction while remaining safe in the other directions. We have also examined the temperature in different points; the results show that the temperature increased in the cathode direction but stayed almost constant in the opposite direction. Our approach is validated by the results obtained in simulations. This paper introduces a new approach to control the direction of temperature diffusion during thermal ablation of tumors. The model proposed can be a new tool for oncologists to prepare an efficient thermal ablation of tumors without important collateral damage to the healthy tissue.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证